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ABSTRAK 

Keupayaan mengawal elemen rangkaian kompleks dengan hanya menggunakan 

sebilangan kecil nod telah muncul sebagai bidang penyelidikan dan menjadi cabaran 
yang penting dalam sistem sains rangkaian. Set penguasaan minimum (MDS) adalah 

topik rangkaian moden yang penting dalam konteks ini. Terdapat beberapa kaedah 
untuk menyelesaikan masalah MDS telah dibangunkan sejak sedekad yang lalu. 
Masalah set penguasaan minimum (MDS) ialah masalah pengoptimuman gabungan NP 

yang ketara dengan pelbagai aplikasi. Kajian ini bertujuan untuk menangani masalah 
MDS secara efisien dengan mencadangkan penggunaan algoritma Hybrid Binary 

Artificial Bee Colony (HBABC). Algoritma ABC biasa mengendalikan pemboleh ubah 
secara berterusan. Oleh itu, kajian ini dijalankan untuk membangunkan ABC binari 
(BABC) untuk disesuaikan dengan cadangan penyelesaian masalah MDS. BABC yang 

diwujudkan adalah berdasarkan populasi penyelesaian. Ini bermakna, BABC berupaya 
untuk meneroka ruang masalah MDS dengan lebih berkesan. Walau bagaimanapun, 

untuk mengelakkan ketidakseimbangan antara prosedur penerokaan dan eksploitasi, 
pengkaji mencadangkan BABC hibrid (HBABC) dengan menggabungkan algoritma 
yang dikenali sebagai Late Acceptance Hill Climbing (LAHC). Satu siri eksperimen 

telah dijalankan untuk membuktikan keberkesanan prosedur yang telah disepadukan 
dengan algoritma ABC. Selain itu, pengkaji turut membandingkan HBABC yang 

dicadangkan dengan algoritma lain dalam kajian tinjauan lepas berdasarkan penanda 
aras set data.Dua kumpulan set data telah digunakan, yang dikategorikan mengikut 
pemboleh ubah yang dikenali sebagai julat. Hasil dapatan kajian mendapati  bahawa 

algoritma HBABC mampu mengatasi algoritma lain apabila julat nodnya adalah  
berbeza. Selain itu, HBABC adalah setanding atau lebih baik berbanding daripada 

kaedah lain apabila pemboleh ubah julatnya adalah sama untuk rangkaian yang diuji. 
Oleh itu, kaedah yang dicadangkan mempunyai kesan yang signifikan dalam 
menentukan MDS. 
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ABSTRACT 

Controlling the elements of complex networks with a small number of nodes has 

recently emerged as a significant area of research and a significant challenge in network 
science. The minimum dominating set (𝑀𝐷𝑆) is an essential modern network topic in 

this context. Several methods for solving the 𝑀𝐷𝑆 problem have been developed over 
the last decade. The minimum dominating set (𝑀𝐷𝑆) problem is a significant 𝑁𝑃-hard 

combinatorial optimization problem with a wide range of applications. This study aims 

to address the 𝑀𝐷𝑆 efficiently by proposing a hybrid binary artificial bee colony 

(HBABC) algorithm. Typical ABC algorithm handles continuous variables; thus, this 
study develops a binary ABC (BABC) to suit the solution representation of the 𝑀𝐷𝑆 

problem. The BABC is based on population of solutions, and thus, it explores the 
problem space effectively. However, to avoid imbalance between exploration and 

exploitation procedures, we propose a hybrid BABC (HBABC) by incorporating a local 
search algorithm called late acceptance hill climbing (LAHC). A series of experiments 
was conducted to prove the impact of the procedures integrated to the ABC algorithm. 

Also, we compare the proposed HBABC to other algorithms from the literature based 
on benchmark datasets. Two groups of datasets were used, which are categorized based 

on a variable called range. Results show that the HBABC algorithm has outperformed 
other algorithms when nodes’ ranges are different. That is, HBABC gained improved 
by 78.5% compared to the rested data. Thus, the proposed method has a significant 
impact on determining the𝑀𝐷𝑆. 

 

 
 

Pus
at 

Sum
be

r 

FTSM



vii 

 

TABLE OF CONTENTS 

 Page 

DECLARATION iii 

ACKNOWLEDGEMENT iv 

ABSTRAK v 

ABSTRACT vi 

TABLE OF CONTENTS vii 

LIST OF TABLES ix 

LIST OF FIGURES x 

LIST OF ABBREVIATIONS xii 

CHAPTER I INTRODUCTION 

1.1 Introduction 1 

1.2 Background 2 

1.3 Problem Statement 3 

1.4 Research Questions 5 

1.5 Research Objectives 5 

1.6 Research Scope 5 

1.7 Significance of Study 6 

1.8 Organization of the Thesis 6 

CHAPTER II LITERATURE REVIEW 

2.1 Introduction 8 

2.2 Artificial Bee Colony Algorithm 8 

2.2.1 ABC Components 9 
2.2.2 ABC Mechanism 9 

2.2.3 Optimization of ABC 10 
2.2.4 Artificial bee colony (ABC) algorithm and 

variants 11 
2.2.5 Discussion of ABC Algorithm 13 

2.3 Minimum Dominating Set 19 

2.3.1 Definition of 𝑴𝑫𝑺 19 
2.3.2𝑴𝑫𝑺 Approaches 19 

2.3.3 Heuristics for the 𝑴𝑫𝑺 20 

Pus
at 

Sum
be

r 

FTSM



viii 

 

2.4 Summary 26 

CHAPTER III METHODOLOGY 

3.1 Introduction 27 

3.2 Research Methodology 27 

3.3 Problem Identification 28 

3.4 Problem Representation 29 

3.5 The proposed Method 31 

3.5.1 ABC Algorithm 32 

3.5.2 Conversion to Binary 34 
3.5.3 Hybridized ABC with Local Search Algorithm 35 

3.6 Model Evaluation 38 

3.7 SUMMARY 39 

CHAPTER IV RESULTS ANALYSIS AND DISCUSSION  

4.1 Introduction 40 

4.2 Experimental Design 40 

4.3 Evaluation: Datasets and Metrics 42 

4.3.1 Datasets 42 
4.3.2 Evaluation metrics 43 

4.4 Results Analysis 44 

4.4.1 Results of the binary Conversion Functions 44 
4.4.2 Results of the hybrid binary ABC 46 

4.4.3 Comparison to the Related Works based on 
identical Range Networks 48 

4.4.4 Comparison of Non-identical Range Networks 52 

4.5 Results discussion 59 

4.6 Summary 64 

CHAPTER V CONCLUSION AND FUTURE WORK 

5.1 Introduction 65 

5.2 Research Summary and Contributions 65 

5.2.1 Research Summary 65 
5.2.2 Research Contribution 67 

5.3 Strengths And Limitations 67 

5.4 Future Work 68 

REFERENCES 69 

Pus
at 

Sum
be

r 

FTSM



ix 

 

LIST OF TABLES 

Table No. Page 

Table 2.1 Literature review of ABC Algorithm 16 

Table 2.2 Literature review of 𝑀𝐷𝑆 problem 23 

Table 3.1 Binary representation for Figure 3.2 30 

Table 4.1 Unit disk graph (UDG) dataset 43 

Table 4.2 Comparison of identical networks with same range of 150, 

200, and 250 49 

Table 4.3 The characteristic of non-identical networks 53 

Table 4.4 Overall results comparison 60 

Table 4.5 Percentage of Algorithms 62 

 

 

Pus
at 

Sum
be

r 

FTSM



x 

 

LIST OF FIGURES 

Figure No. Page 

Figure 3.1 The proposed research methodology 28 

Figure 3.2 An example of the 𝑀𝐷𝑆 29 

Figure 3.3 The workflow of the proposed method 31 

Figure 4.1 Experimental design of the proposed method 41 

Figure 4.2 The round, sigmoid, and angle modulation functions 

performance of for (a) Net 1 45 

Figure 4.3 The round, sigmoid, and angle modulation functions 

performance of for (b) Net 8 45 

Figure 4.4 The round, sigmoid, and angle modulation functions 
performance of for (c) Net 11 46 

Figure 4.5 Analysis of Hybrid ABC algorithm at range of (a) 150 47 

Figure 4.6 Analysis of Hybrid ABC algorithm at range of (b) 200 47 

Figure 4.7 Analysis of Hybrid ABC algorithm at range of (c) 250 48 

Figure 4.8 Network of Net-01, Net-03, Net-07, Net-12, Net-13, and 
Net-14 comparison using HBABC, HGA, ACOLS-LS, 

and ACOLS-LS-S at different range (a) 150 50 

Figure 4.9 Network of Net-01, Net-03, Net-07, Net-12, Net-13, and 

Net-14 comparison using HBABC, HGA, ACOLS-LS, 
and ACOLS-LS-S at different range (b) 200 51 

Figure 4.10 Network of Net-01, Net-03, Net-07, Net-12, Net-13, and 

Net-14 comparison using HBABC, HGA, ACOLS-LS, 
and ACOLS-LS-S at different range (c) 250 51 

Figure 4.11 Comparison between the mean of 𝑀𝐷𝑆 52 

Figure 4.12 Comparison HBABC, HBA, and SAMDS in terms of the 

range included in (a) Net-02 54 

Figure 4.13 Comparison HBABC, HBA, and SAMDS in terms of the 

range included in (b) Net-04 55 

Figure 4.14 Comparison HBABC, HBA, and SAMDS in terms of the 
range included in (c) Net-05 55 

Pus
at 

Sum
be

r 

FTSM

file:///C:/Users/HP1/Desktop/lina%20acadimic_2/sem3/DR.MOH/paraphrasing/thesis/to_dr.m/final_report_lina/submision/new_submmit/Hybrid_17%20%20%20artificial%20bee%20colony%20for%20MDS%20problem_LINA_P103913_0001.docx%23_Toc95498496
file:///C:/Users/HP1/Desktop/lina%20acadimic_2/sem3/DR.MOH/paraphrasing/thesis/to_dr.m/final_report_lina/submision/new_submmit/Hybrid_17%20%20%20artificial%20bee%20colony%20for%20MDS%20problem_LINA_P103913_0001.docx%23_Toc95498497
file:///C:/Users/HP1/Desktop/lina%20acadimic_2/sem3/DR.MOH/paraphrasing/thesis/to_dr.m/final_report_lina/submision/new_submmit/Hybrid_17%20%20%20artificial%20bee%20colony%20for%20MDS%20problem_LINA_P103913_0001.docx%23_Toc95498498
file:///C:/Users/HP1/Desktop/lina%20acadimic_2/sem3/DR.MOH/paraphrasing/thesis/to_dr.m/final_report_lina/submision/new_submmit/Hybrid_17%20%20%20artificial%20bee%20colony%20for%20MDS%20problem_LINA_P103913_0001.docx%23_Toc95498499
file:///C:/Users/HP1/Desktop/lina%20acadimic_2/sem3/DR.MOH/paraphrasing/thesis/to_dr.m/final_report_lina/submision/new_submmit/Hybrid_17%20%20%20artificial%20bee%20colony%20for%20MDS%20problem_LINA_P103913_0001.docx%23_Toc95498509
file:///C:/Users/HP1/Desktop/lina%20acadimic_2/sem3/DR.MOH/paraphrasing/thesis/to_dr.m/final_report_lina/submision/new_submmit/Hybrid_17%20%20%20artificial%20bee%20colony%20for%20MDS%20problem_LINA_P103913_0001.docx%23_Toc95498510
file:///C:/Users/HP1/Desktop/lina%20acadimic_2/sem3/DR.MOH/paraphrasing/thesis/to_dr.m/final_report_lina/submision/new_submmit/Hybrid_17%20%20%20artificial%20bee%20colony%20for%20MDS%20problem_LINA_P103913_0001.docx%23_Toc95498510
file:///C:/Users/HP1/Desktop/lina%20acadimic_2/sem3/DR.MOH/paraphrasing/thesis/to_dr.m/final_report_lina/submision/new_submmit/Hybrid_17%20%20%20artificial%20bee%20colony%20for%20MDS%20problem_LINA_P103913_0001.docx%23_Toc95498511
file:///C:/Users/HP1/Desktop/lina%20acadimic_2/sem3/DR.MOH/paraphrasing/thesis/to_dr.m/final_report_lina/submision/new_submmit/Hybrid_17%20%20%20artificial%20bee%20colony%20for%20MDS%20problem_LINA_P103913_0001.docx%23_Toc95498511
file:///C:/Users/HP1/Desktop/lina%20acadimic_2/sem3/DR.MOH/paraphrasing/thesis/to_dr.m/final_report_lina/submision/new_submmit/Hybrid_17%20%20%20artificial%20bee%20colony%20for%20MDS%20problem_LINA_P103913_0001.docx%23_Toc95498512
file:///C:/Users/HP1/Desktop/lina%20acadimic_2/sem3/DR.MOH/paraphrasing/thesis/to_dr.m/final_report_lina/submision/new_submmit/Hybrid_17%20%20%20artificial%20bee%20colony%20for%20MDS%20problem_LINA_P103913_0001.docx%23_Toc95498512


xi 

 

Figure 4.15 Comparison HBABC, HBA, and SAMDS in terms of the 

range included in (d) Net-06 56 

Figure 4.16 Comparison HBABC, HBA, and SAMDS in terms of the 

range included in (e) Net-8 56 

Figure 4.17 Comparison HBABC, HBA, and SAMDS in terms of the 
range included in (f) Net-09 57 

Figure 4.18 Comparison HBABC, HBA, and SAMDS in terms of the 
range included in (g) Net-10 57 

Figure 4.19 Comparison HBABC, HBA, and SAMDS in terms of the 
range included in (h) Net-11 58 

Figure 4.20 Comparison of 𝑀𝐷𝑆 mean of non-identical networks Net-

02, Net-04, Net-05, Net-06, Net-08, Net-09, Net-10, and 

Net-11 59 

Figure 4.21 show Percentage of Algorithms 63 

Figure 4.22 The HBABC’s results against ACO-LS-S 63 

 

 

  

 

 

 
Pus

at 
Sum

be
r 

FTSM

file:///C:/Users/HP1/Desktop/lina%20acadimic_2/sem3/DR.MOH/paraphrasing/thesis/to_dr.m/final_report_lina/submision/new_submmit/Hybrid_17%20%20%20artificial%20bee%20colony%20for%20MDS%20problem_LINA_P103913_0001.docx%23_Toc95498513
file:///C:/Users/HP1/Desktop/lina%20acadimic_2/sem3/DR.MOH/paraphrasing/thesis/to_dr.m/final_report_lina/submision/new_submmit/Hybrid_17%20%20%20artificial%20bee%20colony%20for%20MDS%20problem_LINA_P103913_0001.docx%23_Toc95498513
file:///C:/Users/HP1/Desktop/lina%20acadimic_2/sem3/DR.MOH/paraphrasing/thesis/to_dr.m/final_report_lina/submision/new_submmit/Hybrid_17%20%20%20artificial%20bee%20colony%20for%20MDS%20problem_LINA_P103913_0001.docx%23_Toc95498514
file:///C:/Users/HP1/Desktop/lina%20acadimic_2/sem3/DR.MOH/paraphrasing/thesis/to_dr.m/final_report_lina/submision/new_submmit/Hybrid_17%20%20%20artificial%20bee%20colony%20for%20MDS%20problem_LINA_P103913_0001.docx%23_Toc95498514
file:///C:/Users/HP1/Desktop/lina%20acadimic_2/sem3/DR.MOH/paraphrasing/thesis/to_dr.m/final_report_lina/submision/new_submmit/Hybrid_17%20%20%20artificial%20bee%20colony%20for%20MDS%20problem_LINA_P103913_0001.docx%23_Toc95498515
file:///C:/Users/HP1/Desktop/lina%20acadimic_2/sem3/DR.MOH/paraphrasing/thesis/to_dr.m/final_report_lina/submision/new_submmit/Hybrid_17%20%20%20artificial%20bee%20colony%20for%20MDS%20problem_LINA_P103913_0001.docx%23_Toc95498515
file:///C:/Users/HP1/Desktop/lina%20acadimic_2/sem3/DR.MOH/paraphrasing/thesis/to_dr.m/final_report_lina/submision/new_submmit/Hybrid_17%20%20%20artificial%20bee%20colony%20for%20MDS%20problem_LINA_P103913_0001.docx%23_Toc95498516
file:///C:/Users/HP1/Desktop/lina%20acadimic_2/sem3/DR.MOH/paraphrasing/thesis/to_dr.m/final_report_lina/submision/new_submmit/Hybrid_17%20%20%20artificial%20bee%20colony%20for%20MDS%20problem_LINA_P103913_0001.docx%23_Toc95498516
file:///C:/Users/HP1/Desktop/lina%20acadimic_2/sem3/DR.MOH/paraphrasing/thesis/to_dr.m/final_report_lina/submision/new_submmit/Hybrid_17%20%20%20artificial%20bee%20colony%20for%20MDS%20problem_LINA_P103913_0001.docx%23_Toc95498517
file:///C:/Users/HP1/Desktop/lina%20acadimic_2/sem3/DR.MOH/paraphrasing/thesis/to_dr.m/final_report_lina/submision/new_submmit/Hybrid_17%20%20%20artificial%20bee%20colony%20for%20MDS%20problem_LINA_P103913_0001.docx%23_Toc95498517
file:///C:/Users/HP1/Desktop/lina%20acadimic_2/sem3/DR.MOH/paraphrasing/thesis/to_dr.m/final_report_lina/submision/new_submmit/Hybrid_17%20%20%20artificial%20bee%20colony%20for%20MDS%20problem_LINA_P103913_0001.docx%23_Toc95498518
file:///C:/Users/HP1/Desktop/lina%20acadimic_2/sem3/DR.MOH/paraphrasing/thesis/to_dr.m/final_report_lina/submision/new_submmit/Hybrid_17%20%20%20artificial%20bee%20colony%20for%20MDS%20problem_LINA_P103913_0001.docx%23_Toc95498518
file:///C:/Users/HP1/Desktop/lina%20acadimic_2/sem3/DR.MOH/paraphrasing/thesis/to_dr.m/final_report_lina/submision/new_submmit/Hybrid_17%20%20%20artificial%20bee%20colony%20for%20MDS%20problem_LINA_P103913_0001.docx%23_Toc95498518
file:///C:/Users/HP1/Desktop/lina%20acadimic_2/sem3/DR.MOH/paraphrasing/thesis/to_dr.m/final_report_lina/submision/new_submmit/Hybrid_17%20%20%20artificial%20bee%20colony%20for%20MDS%20problem_LINA_P103913_0001.docx%23_Toc95498519
file:///C:/Users/HP1/Desktop/lina%20acadimic_2/sem3/DR.MOH/paraphrasing/thesis/to_dr.m/final_report_lina/submision/new_submmit/Hybrid_17%20%20%20artificial%20bee%20colony%20for%20MDS%20problem_LINA_P103913_0001.docx%23_Toc95498520


xii 

 

LIST OF ABBREVIATIONS 

ABC  Artificial bee colony  

ACO Ant colony optimization algorithm 

ACOLS-LS Ant colony optimization Local Search- Local Search 

ACOLS-LS-S Ant colony optimization Local Search -Local Search-Specific  

AMO Animal Migration Optimization 

BA Bat algorithm 

HBA Hybrid Bat Algorithm 

BCO Bee colony optimization 

BSO Bee swarm optimization 

CS Cuckoo search 

DS  Dominating Set 

EB Employed Bees 

EHABC Enhance Hybrid Artificial Bee Colony 

FA Firefly algorithm 

HABC Hybrid Artificial Bee Colony 

HBABC Hybrid Binary Artificial Bee Colony 

HBCA Honey bee colony algorithm 

HGA Hybrid Genetic Algorithm  

IQABC Improved Quick Artificial Bee Colony  

KFABC knowledge fusion Artificial bee colony  

LAHC Late Acceptance Hill-Climbing 

MBA Mine Blast Algorithm 

MCDS Minimum Connected Dominating Set  

MSBA Mutable smart bee algorithm 

MWDS Minimum Weight Dominating Set  

OB Onlooker Bees 

PSO Particle Swarm Optimization 

Pus
at 

Sum
be

r 

FTSM



xiii 

 

SAMDS Simulated Annealing 𝑀𝐷𝑆  

SAMSABC Surrogate Assisted Multi-Swarm Artificial Bee Colony  

SB Scout Bees 

SD Standard Deviation  

UDG Unit Disc Graphs  

VBA Virtual bee algorithm 

VRP Vehicle Routing Problem  

WSN Wireless Sensor Network 

𝑀𝐷𝑆 Minimum Dominating Set 

    

 

 

 

 

 

 

Pus
at 

Sum
be

r 

FTSM



 

 

CHAPTER I  

 

 

INTRODUCTION 

1.1 INTRODUCTION 

In graph theory, the concept of dominance has been extensively studied (Hao et al. 

2020). Meanwhile, the number of queens '𝑛 × 𝑛' chess board required to identify an 

earlier historical origin of the dominating set was determined. Zhao et al. (2020) defined 

the dominating set (𝐷𝑆) as a subset of a given graph with connections to all other 

vertices. The minimum 𝐷𝑆  (𝑀𝐷𝑆) is the domination number when studied by Padma 

and Karthica, and it is denoted by 𝛾(𝐺) (Padma & Karthica 2020). 𝐺 is defined as 𝐺 =

𝑎 set of vertices (𝑉) and a set of edges (𝐸) (𝑉, 𝐸). Adjacencies of a vertex are only 

dominated by it and vice versa. In other words, If 𝑣 and 𝑢 are both in  𝑉 , and the pair 

(v, u) belongs to E then either one of them is a dominating vertex. That is, 𝐷𝑆 ⊂ 𝑉 and 

𝑉 𝐷𝑆⁄ = 𝑁𝐷𝑆, which is adjacent to DS. This work addresses the problem of minimising 

the 𝐷𝑆, where 𝑁𝐷 is the set of non-dominant nodes. A given graph's (𝐺) 𝐷𝑆 is a subset 

of vertices connected to all other vertices. The 𝐷𝑆 with the fewest vertices is chosen as 

the minimum dominating set (𝑀𝐷𝑆). 𝑀𝐷𝑆 is a problem of optimization that has 

applications in network clustering (Oprişa et al. 2018), wireless networking 

(Priyadarshini & Sivakumar 2018), big data (Subramanyam & Somayajulu 2017), and 

social networks (Bouamama & Blum 2021). 𝐷𝑆 Members, for example, serve as cluster 

heads in a wireless sensor network (WSN), by collecting data and transmitting it to a 

gateway. By allowing only a small number of nodes with sufficient energy (i.e., 

the 𝑀𝐷𝑆) to access the gateway, this process helps to extend network life. 

Exact methods have been used to implement small instances of graphs 

effectively (Raviv et al. 2020). Because these methods are limited to small instances, 

approximate methods are used for large instances (Sartori & Buriol 2020). Greedy 
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methods can provide an approximation in a short amount of time. Nevertheless, this 

approximation degrades for large graph instances especially of irregular structure (S. 

Wang et al. 2019). Thus, a stochastic search method has been proposed to provide an 

accurate solution for the 𝑀𝐷𝑆 in a reasonable amount of time to address this issue. 

The current study proposes the artificial bee colony (ABC) to characterize the 

MDS problem, which is a population-based algorithm (Karaboga et al. 2007). ABC 

algorithms are capable of effectively exploring the space state of a given problem. 

However, to balance the search process, it is necessary to intensifies a solution's 

neighbourhood and the problem space (Abualigah & Diabat 2021). As a result, this 

research combines ABC with a local search to broaden the search for newly developed 

solutions. The main focus of this study is to enforce the ABC exploitation process using 

hybridization with a local search aiming at MDS. This process enables the algorithm to 

manipulate adjacent DSs which, in principle, have the potential to be the MDS of the 

graph. Extensive experiments on various graph instances are used to assess the 

performance of the proposed method. The purpose of these experiments is to 

demonstrate the performance of local search and how it compares to greedy methods. 

1.2 BACKGROUND 

The minimum dominating set problem has recently received attention, particularly in 

industrial applications. Users in social media were modelled as nodes, with edges 

representing user relationships. Companies typically monitor their customers' activities, 

such as conversation and interaction. The company's ability to monitor all customers is 

hampered by a large number of users (Dijkmans et al. 2020). A possible solution is to 

create a subset, such as a typical dominating set, to carry out this task. However, in the 

case of social network scale, building a dominating set is still prohibitively expensive 

due to the possibility of a sizeable dominating set. As a result, we must consider the 𝑘-

dominating set 𝐷𝑘 such as either each vertex belongs to 𝐷𝑘  or to be at least connected 

to one member of 𝐷𝑘via a path that is connected to no more than 𝑘 edges. When 𝑘 = 1, 

the classical minimum dominating set corresponds to a particular case. For values 𝑘 >

1, the cardinality of a 𝑘-dominating set is less than that of a 𝐷1-dominating set: 

|𝐷𝑘||𝐷1|, lowering the network's monitoring cost (Zverovich et al. 2021). 
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In recent years, researchers have proposed a number of optimization algorithms, 

which can be classified into two types: traditional optimization algorithms and modern 

intelligent algorithms (N. Xu et al. 2002). Standard optimization algorithms are 

typically used to solve convex optimization problems with a known global optimum. 

On the other hand, modern intelligent algorithms are well suited to solving nonconvex 

optimization problems, particularly multi-extremum problems. Most fields, such as 

economics, industrial production, and network optimization, have many nonconvex 

optimization problems (Ju et al. 2016). The application of modern intelligent  

algorithms, such as artificial neural networks, artificial immune algorithms, particle 

swarm algorithms (Bonyadi & Michalewicz 2017)(Bonyadi & Michalewicz 

2017)(Bonyadi & Michalewicz 2017)(Bonyadi & Michalewicz 2017)(Bonyadi & 

Michalewicz 2017), genetic algorithms, ant colony algorithms, artificial fish swarm 

algorithms, cultural algorithms, tabu search algorithms, and simulated annealing 

algorithms, has naturally become the focus of attention in various fields (Yu et al. 2018). 

Each of these algorithms has distinct advantages for resolving these numerous 

challenges. However, no single intelligent algorithm can take advantage of all of these 

benefits, and all have drawbacks such as dimensional difficulties, high memory 

requirements, inability to handle nonlinear characteristics, premature phenomena, 

collapsing into local optima, and excessive computation time(Yuan et al. 2014). 

1.3 PROBLEM STATEMENT 

The dominating set (DS) is a subset of the vertices of a particular graph, where all other 

nodes are connected to this set. DS has been used to mine networks that encompasses 

many applications, including wireless sensor networks (WSN) and social networks. The 

cluster head may be located using DS to reduce energy usage by reducing the DS size. 

Alternatively, choosing a smaller DS size to reduce the expense of the diffusion could 

increase the influence of diffusing in a social network (Stoica et al. 2020). The reduction 

of the DS size to save energy or money is a typical problem in both of the scenarios 

outlined above. The  DS reduction size is the gap that academics have been attempting 

to bridge in order to reach the minimum dominating set (MDS), which is classified as 

an Np-hard problem (Chalupa 2018). There is still an opportunity for more research into 

meeting 𝑀𝐷𝑆 criteria using small graph instances and certain topologies. Because of 
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the exponential expansion with rising input size, the huge network poses a new issue 

for the algorithms. Researchers who have proposed approximation methodologies to 

provide a solution for the 𝑀𝐷𝑆 problem have questioned this problem. Using greedy 

algorithms, for example, could result in a solution in polynomial time; however, with 

this class of algorithms overestimates the size of the MDS. The worst-case situation 

may emerge due to MDS worsening with the provided graph's input size. As a result, 

alternative approximations based on standard methods have been offered; nonetheless, 

obtaining the exact solution remains a long way off. 

 The ant colony algorithm (ACO) is one of the earliest meta-heuristics that used 

for the DS problems  (Ho et al. 2006) . The preference of applying the ACO to MDS is 

due to its compatibility with the DS problems as they are graph-based and there are 

available heuristics the problem. These facts motivated more studies to investigate the 

ACO for such problems. However, the ACO was converging fast to a low-quality local 

optimum solution, and thus the DS size still required to be minimized. The converging 

problem can affect other population-based meta-heuristic algorithms, especially if they 

do not consider the balance between exploitation and exploration (Eftimov & Korošec 

2019). Also, partitioning the graph into subsets is studied to improve the convergence 

of the bat algorithm (BA) when it is applied to the MDS (Abed & Rais 2019). The 

partitioning scheme in Abed & Rais (2019) showed improved performance of the BA 

in term of running time. However, partitioning a graph can lead to loss of data since 

each partition was tackled independently. 

In the context of swarm intelligence, artificial bee colony (ABC) is a population-

based algorithm that mimics the swarm behaviour of the bee colony, where all members 

of the swarm move toward a rich source of food (Karaboga & Basturk 2007). The recent 

success of applying the ABC for community detection in the study of Che et al. 

(2021).The study of Che et al. (2021) has motivated us to investigate its performance 

for the MDS problem. Since the ABC is based on the swarm behaviour, it explores the 

problem space more than exploiting it. However, ABC is prone to falling into local 

minima when dealing with complex problems. Bees' search pattern is good for 

exploration but poor for exploitation  (Rahnema & Gharehchopogh 2020). To achieve 
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balance between the exploration and exploitation, we hybridize the ABC with a local 

search, where the latter is able to intensify the search around an eligible solution. 

1.4 RESEARCH QUESTIONS 

This research aims to provide effective searching algorithm for the 𝑀𝐷𝑆. Thus, the 

following research questions are raised: 

1. How to balance between exploration and exploitation procedures of the artificial 

bee colony to find the smallest 𝐷𝑆 for large graph instances? 

2. How hybridization of artificial bee colony performs effectively when the 𝑀𝐷𝑆 

problem is considered? 

1.5 RESEARCH OBJECTIVES 

The main aim of this study is to provide a stochastic algorithm that can scale for large 

graph instances. To achieve this goal, the following sub objectives are determined: 

1. To improve the exploitation procedure of the artificial bee colony to obtain a 

balance between the exploration and exploitation.  

2. To evaluate the proposed method (Hybrid artificial bee colony algorithm) and 

compare it against the algorithms. 

1.6 RESEARCH SCOPE 

This study focuses on 𝑀𝐷𝑆 problem for un-weighted connected graphs. In these graphs, 

each node is reachable from any node throughout a path in the graph. Thus, graphs of 

multiple components are excluded in this research. In this study, MDS is addressed by 

a hybrid ABC algorithm in which we incorporate a local search algorithm called late 

acceptance hill-climbing with the ABC algorithm by 10%. The output of the hybrid 

algorithm is then used to visualise the graph with the fewest number of dominating sets. 

Using this method, we get the fewest dominating sets. 

Pus
at 

Sum
be

r 

FTSM



6 

 

1.7 SIGNIFICANCE OF STUDY 

Graph theory is an essential branch of mathematics. As a result of numerous research 

activities, it has been grown rapidly. Over the last few decades, graph theory and 

combinations have accounted for one-third of all research papers published in 

mathematics. Dominance in graphs is a well-studied branch of graph theory with 

applications in computer and communications, social networks, molecular physics and 

chemistry, biological sciences, engineering, and many other areas of graph theory. This 

approach is primarily due to the large number of new parameters derived from the 

fundamental definition of dominance. 

 𝑀𝐷𝑆 is an optimization problem found in network clusters, wireless networks, 

big data, and social networks. For example, in the Wireless Sensor Network (WSN), 

𝐷𝑆 members act as cluster heads, collecting and transmitting data to a gateway. By 

allowing only a small number of nodes with sufficient power (i.e., 𝑀𝐷𝑆) to access the 

gateway, this process helps to extend the network's life. 

As a result, it is an excellent opportunity to conduct these studies on various 

graph examples to determine whether the proposed method is an effective solution to 

the 𝑀𝐷𝑆 problem. Consequently, the importance of this project is that enables new 

studies to achieve efficient solution to the MDS applications. 

1.8 ORGANIZATION OF THE THESIS 

The thesis is composed of five chapters including the current one.  The first chapter 

contained an introduction, background, problem statement, research questions, 

objectives, research scope, and significance of study.  The literature review is described 

in Chapter II which includes introduction, artificial bee colony algorithm, discussion of 

minimum dominating set definition, and the summary.  The methodology is described 

in Chapter III.  This chapter includes an introduction, research methodology, problem 

identification, problem representation, the proposed method, ABC algorithm, 

conversion to binary, hybridized ABC with local search algorithm, model evaluation, 

and summary.  Chapter IV presents overview, experimental design, evaluation datasets 
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and metrics (datasets and metrics), results analysis, summary.  Chapter V is composed 

of the overall summarization of the thesis, recommendations, and future work. 
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CHAPTER II  

 

 

LITERATURE REVIEW 

2.1 INTRODUCTION 

The purpose of Chapter 2 is to describe the core elements of the title (a hybrid artificial 

bee colony method for the least dominant set problem) and to provide support for the 

research aims. The following subjects are covered: ABC algorithm and summarising 

past research on balancing ABC algorithm exploitation and exploration. 

Chapter 2 defines the term minimal dominant set, provides an overview of 

different techniques used to address the 𝑀𝐷𝑆 problem, and provides a brief assessment 

of some related publications. 

This chapter is divided into the following sections: Section 2.2 defines the 

Artificial Bee Colony (ABC) algorithm. Sections 2.3 provide an overview of recent 

efforts to resolve the 𝑀𝐷𝑆 problem, a discussion of the related works to the 𝑀𝐷𝑆 

problem, and a summary of this chapter. 

2.2 ARTIFICIAL BEE COLONY ALGORITHM 

Karaboga (2005) created the Artificial Bee Colony (ABC) algorithm, a swarm-based 

meta-heuristic technique for improving numerical problems. Honey bees' creative 

foraging activity inspired it. Three critical components comprise the ABC model: 

employed and unemployed foraging bees, as well as food sources. The first two 

components, employed and unemployed foraging bees, are responsible for the third 

component, the hunt for abundant food sources. Additionally, the model outlines two 

dominant types of behaviour required for self-organization and collective intelligence: 
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Positive feedback is generated when foragers are recruited to rich food sources, while 

negative feedback is generated when foragers abandon low food sources. 

2.2.1 ABC Components 

The workforce of ABC algorithm is divided into three categories: employed bees (EB), 

onlooker bees (OB), and scout bees (SB).  These categories could be termed as ABC 

algorithm components. In theory, the EB component is responsible for narrowing search 

to neighbourhoods that are already stored in memory. The OB component is responsible 

for exploiting possible neighbourhoods, whereas the SB component is responsible for 

randomly generating solutions from far-fetched unseen neighbourhoods to stimulate 

exploration in ABC. Positive reinforcement and multiple interactions are two critical 

components of collective intelligence that are implemented through the EB and OB 

components. The SB component of the ABC algorithm is responsible for implementing 

the last two aspects of the method: negative feedback and fluctuation. The EB and OB 

components showed fluctuation or randomness into the swarm. The scale of 

randomization is frequently managed by a coefficient that can be increased or decreased 

to provide greater or lesser variation. Compared to the EB and OB components, the SB 

component has a substantially higher degree of variability because solutions are created 

entirely randomly (S. F. Hussain et al. 2020). 

2.2.2 ABC Mechanism 

 In ABC, a colony of artificial forager bees (agents) searches for abundant artificial food 

sources (reasonable solutions for a given problem). To use ABC, first, transform the 

optimization problem at hand into the problem of determining the best parameter vector 

that minimises an objective function. The process starts with randomly selection of 

artificial bees of a population with an initial solution vectors.  Then, the process 

continues to improve ABC using iteration leading to employing the strategies.  Finally, 

the process moves towards better solutions via a neighbour search mechanism while 

abandoning poor solutions.  

The ABC deployment mechanism begins with exploiting the nectar of food 

sources, followed by continuous exploitation, which eventually causes them to become 
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exhausted. The employed bee exploiting the exhausted food source then becomes a 

scout bee searching for new food sources. In other words, when the employed bee's 

food source is depleted, they become a scout bee. In ABC, a food source's position 

represents a potential solution to a problem, and the nectar amount of a food source 

corresponds to the quality (fitness) of the associated answer. Because each employed 

bee is associated with one and only one food source, the number of employed bees 

equals the number of food sources (solutions) (Karaboga et al. 2007). 

2.2.3 Optimization of ABC 

Optimization problems have appeared in various fields, including engineering, 

economics, and management. Effective and efficient optimization algorithms are 

always required to tackle increasingly complex real-world optimization problems. In 

recent years, some swarm intelligence algorithms inspired by the social behaviours of 

birds, fish, or insects, such as particle swarm optimization (PSO), ant colony 

optimization (ACO), artificial bee colony (ABC), and firefly algorithm (FA), have been 

proposed to solve optimization problems (Qawqzeh et al. 2021). According to a recent 

study, ABC is found to be superior or comparable to other swarm intelligence 

algorithms (Jahwar & Ahmed 2021).  

ABC has been used to solve various problems (Gu et al. 2020). ABC, like other 

stochastic algorithms, faces some complex issues. During the search process, ABC, for 

example, exhibits slow convergence speed. A new candidate solution is generated by 

updating a random dimension vector of its parent solution due to the unique search 

pattern of bees. As a result, the offspring (new candidate solution) is similar to its parent, 

and the convergence rate slows (Gu et al. 2020). 

Furthermore, ABC is prone to falling into local minima when dealing with 

complex multimodal problems. Bees' search pattern is good for exploration but poor for 

exploitation. On the other hand, a good optimization algorithm should balance 

exploration and exploitation during the search process (Rahnema & Gharehchopogh 

2020). 
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Based on Ab Wahab et al. (2015), swarm-based algorithms have grown to 

metaheuristic research showing outperforming evolutionary in population-based 

metaheuristic algorithms. Until 2019, there were more than fifty swarm-based 

metaheuristic algorithms were successfully applied in a variety of areas, including 

engineering, design, energy utilization, transportation, electrical and electronics 

engineering, business and economics, and arts (K. Hussain et al. 2019). 

In comparison to more established and more recent methods, ABC has 

demonstrated promising outcomes. K. Hussain et al. ( 2017) demonstrated the 

effectiveness of ABC as a fuzzy neural network optimizer. Moreover, Garg (2014) used 

ABC for various structural engineering design challenges and discovered that it was 

more effective in reducing design costs than other metaheuristic algorithms . Garg 

(2014) developed a two-stage efficient strategy for resolving trustworthy redundancy 

allocation challenges. ABC was utilised to determine the optimal solution for reliability-

redundancy allocation in this technique, improved in the second phase. The ABC 

method was used to optimise the parameters of an industrial system based on fuzzy 

logic. ABC outperformed both conventional methods and other evolutionary 

algorithms. The findings established ABC's advantage over PSO. 

Numerous modifications and hybrids of the ABC algorithm have been proposed 

in the literature to generate sufficient population diversity to achieve the desired trade-

off between exploration and exploitation. However, most ABC research focuses on 

high-level experimental analysis (Bansal et al. 2018). 

2.2.4 Artificial bee colony (ABC) algorithm and variants 

The objective of ABC is to locate the patch of flowers that contains the most nectar 

(optimal solution). To accomplish this, ABC divides the bee swarm into three groups: 

employed bees, onlooker bees, and scout bees. Each bee represents a D-dimensional 

solution; other bees will most likely follow the bee that discovers the most valuable 

food source to the most advantageous location. As with PSO, ABC uses the concept of 

memory to save user-defined best locations.  
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A bee visits a new location and then compares it to its previous best location. If 

the new location is preferable, the old one is forgotten, and the new one is remembered; 

if the new location is not preferable, the memory remains unchanged. ABC begins by 

randomly assigning bees to locations. When employed bees return to the beehive, they 

communicate with onlooker bees, who select the employed bee to follow based on the 

probability of selection (2.1): 

𝑃𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑛
𝑆𝑁
𝑛=1

 …(2.1) 

Where, i and SN indicate the total number of food sources, where 𝑓𝑖𝑡𝑖 denotes 

the objective function value (nectar amount). The more nectar a worker bee shares, the 

more likely it is that onlooker bees will choose it. With the assistance of Equation (2.2), 

the onlooker bee moves to a new location 𝑣𝑖, guided by the chosen employed bee: 

 𝑣𝑖 = 𝑥𝑖 + 𝑅𝑎𝑛𝑑𝑖(𝑥𝑖 −  𝑥𝑗) …(2.2) 

Where 𝑥𝑖 is the current location in memory, 𝑥𝑗 is the randomly chosen employed 

bee, and randomness is added to find nectar around location 𝑥𝑗. After several iterations, 

any bee that cannot find a better food source for an extended period is replaced with 

scout bee 𝑣𝑛𝑒𝑤 . The failed bee's scout bee roams around any random or unexplored 

region to explore the environment as in Equation (2.3): 

 𝑣𝑛𝑒𝑤 = 𝑙𝑏𝑖 + 𝑅𝑎𝑛𝑑𝑖(𝑢𝑏𝑖 − 𝑙𝑏𝑗) …(2.3) 

Where 𝑙𝑏𝑖, 𝑢𝑏𝑖, and 𝑅𝑎𝑛𝑑𝑖  are the lower, upper, and randomness bounds [0,1]. 

The next cycle begins with employed bees visiting the neighbourhoods of locations 

remembered by Algorithm 1 (chapter 3, page 34) summarises the three-step ABC 

procedure. 

Y. Xu et al. (2013) improve search pattern by proposing a series of reasonable 

solutions in which, they employed bees and onlooker bees processes. Hence, new 

criteria were generated around the best solutions to improve the speed of the algorithm's 
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convergence. The new ABC (NABC) has shown improved search efficiency when it 

was compared to ABC. 

In another trial, ABC algorithm was altered to solve problems with constraints 

and then, by comparing the results to state-of-the-art meta-heuristics such as genetic 

algorithms, a differential POS was evolved (Karaboga & Akay 2011). The new variant 

resulted in two changes to ABC.  The first change was enabling employed updating 

bee's parameter.  The second change was creating Deb's tournament selection rules. The 

statistical analysis, which included ANOVA and ANOM, recommended the best 

parameters for the variant. In another article, Karaboga & Akay (2011), the same 

authors showed the improved ABC with the changes in the perturbation process. Hence, 

this process solved the issue of ABC's poor convergence on non-separable and 

composite constrained optimization problems. When the results of the experiments 

were compared to the standard and variants of ABC and other popular population-based 

algorithms, the proposed modification significantly improved ABC performance. 

Sharma et al. (2016) have proposed another necessary modification to ABC, in 

which lévy flight was used as a balanced randomization strategy to avoid extra 

exploration and poor convergence. The variant included the lévy flight local search 

strategy as the final (4th) step after the employed bees, onlooker bees, and scout bees 

steps. 

2.2.5 Discussion of ABC Algorithm 

Table 2.1 summarizes ten research papers on the ABC algorithm from a different 

perspective.  The papers enclosed are distributed according to the year of publication as 

follows: 1 (2015), 4 (2019), 3 (2020), and 2 (2021). The paper distribution shows that 

90% of the selected papers were published within the last three years, while only one 

paper (10%) was selected because it contains essential basic information about the ABC 

algorithm.  Hancer et al. (2015) has detailed one of the earliest modifications to ABC 

algorithm called a binary modification.  

This modification was developed by integrating evolutionary-based similarity 

search mechanisms into an existing binary ABC variant.  In 2015, the gap discussed 
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was eliminating the irrelevant (redundant) features.  Since 2019, there have been several 

modifications.  A modified hybrid artificial bee colony (HABC) algorithm was used for 

numerical optimization by enhancing the accuracy (Pan et al. 2019).  The other 

modified ABC algorithm was conducted by Huang et al. (2019) to enhance the ABC 

algorithm (EHABC) because of the optimization problems.  EHABC was specifically 

used for solving continuous numerical optimization.  The control of the ABC algorithm 

was discussed by Kumar & Nagalla (2020). To improve the qualities of the final 

solutions and convergence characteristics compared to the standard implementations of 

the ABC algorithms.  

This control was powered by the decision-making process of the employed bees 

managing transitions to the dance area is modelled.  The control procedure creates a 

more flexible transition mechanism.  In the same year of 2019, Aslan et al. (2019) 

worked on the ABC algorithm to reach improved quick ABC (iqABC) to exploit a better 

mechanism based on the ant’s food management.  However, there is still no full solution 

to the complex behaviours of foraging for the food of the honey bees.  The modified 

algorithm iqABC balances the local and the global search ability to attain optimization.  

The other modification was conducted by Sun et al. (2020) by surrogate-assisted multi-

swarm artificial bee colony for complex numerical optimization problems.  

The methodology used in this modification includes employing a diversity of 

enhanced local exploitation capability with an orthogonal method for better 

competition.  The proposed algorithm can well keep the balance between exploration 

and exploitation with an outstanding performance which, compared to Aslan et al. 

(2019), represents a higher level of coordinating the algorithm performance.  

Away from modifying ABC, S. F. Hussain et al. (2020) have introduced 

clustering optimization to build similarity between rows and columns and fill the gap 

associated with lacking optimization problems for data clustering.  The performance of 

the clustering approach has attained very noticeable performance.  

Another approach for better treating the ABC algorithm was adaptive 

neighbourhood search and Gaussian perturbation (Xiao et al. 2021).  The process has 
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some limitations, such as weak exploitation ability and slow convergence. The 

contribution of involving adaptive neighbourhood search is proposing Gaussian 

perturbation ABC algorithm.  

Further, H. Wang et al. (2021) proposed an artificial bee colony algorithm based 

on knowledge fusion using knowledge to sense the search status, a learning mechanism.  

In this approach, weak exploitation capabilities of the traditional ABC algorithm have 

been evolved; however, the fusion approach results in a novel ABC algorithm based on 

knowledge fusion (called KFABC).  The last article performed by Xiao et al. (2021) 

discusses binary optimization, a similar issue discussed earlier by Hancer et al. (2015).  

Xiang et al. (2021), an artificial bee colony algorithm was investigated with a pure 

crossover operation for binary optimization using information sharing and removing 

random perturbation in Xiang's article.  The experimental results demonstrate that the 

proposed ABC is superior to other state-of-the-art approaches in terms of solution 

accuracy, convergence speed, and robustness and, consequently, creates ABC to 

successfully solve the binary structure of the (UFLP). 

As conclusion for ABC Algorithm Table 2.1 summarizes ten research papers 

published between 2015 (Hancer et al. 2015) and 2021 (Xiang et al. 2021).  The papers 

discuss the improvement of ABC and the modified BABC.  The methodology used a 

comparison, optimization, and proposing various hybridization techniques.  The results 

were denoted by successful attempts to enhance previous findings.  The paper has 

mainly contributed to show the enhancement of ABC algorithm and developing 

different models.  It is important to embark on the gaps mentioned in these articles.  The 

eliminating of irrelevant features, low accuracy, difficulty of solving complex 

problems, convergence problem, and minimizing the limitation of ABC. 

 

 

 

Pus
at 

Sum
be

r 

FTSM



 
 

 

 

1
6

 

Table 2.1 Literature review of ABC Algorithm 

# Author/Year 

Title 

Objective Methodology Gaps Results Contribution 

1 Hancer et al. (2015).  A 

modified binary ABC 

algorithm based on 

advanced similarity  

scheme for feature 

selection  

To enhance the binary 

ABC algorithm's 

performance for feature 

selection problems by 

incorporating 

evolutionary similarity  

search mechanisms into 

an existing binary ABC 

variant  

Comparing with some 

well-known variants of 

(PSO) and ABC 

algorithms 

The pre-processing task 

of eliminating irrelevant 

or redundant features  

Obtaining higher 

classification 

performance by 

eliminating irrelevant and 

redundant features 

The modified ABC 

motivates and addresses 

feature selection 

problems 

2 Pan et al. (2019). A 

hybrid artificial bee 

colony algorithm with 

modified search model 

for numerical 

optimization  

 

To propose hybrid (ABC) 

to improved strategies 

and better utilization 

HABC tests a new search 

model (random mutation 

scheme) and to generate 

multiple dimensions.  

ABC standard suffers 

from low accuracy and 

slow convergence rate. 

HABC is superior to 

other three ABC 

algorithms. 

The limited ability of the 

traditional ABC results in 

creating HABC 

3 Huang et al. (2019). An 

enhanced hybridized 

artificial bee colony 

algorithm for 

optimization problems 

To present (EHABC) 

algorithm for 

optimization problems. 

EHABC enhanced 

convergence speed and 

the information exchange 

between bees using 

mutation operator. 

 

 Some problems of 

optimization exist. 

EHABC outperforms 

ABC GABC, HABC, and 

EABC in solving 

continuous numerical 

optimization problems. 

By utilising the crossover 

function of GA, we can 

enhance optimization. 

4 Aslan (2019). A 

Transition Control 

Mechanism for Artificial  

To  improve the qualities 

of the final solutions and  

The ABC algorithm is 

strengthened by the 

addition of a new control 

mechanism that simulates  

Difficulties in managing 

the control transition 

behaviour. 

Employing foragers to 

integrate standard serial 

and parallel 

Developing a new model 

for the employed bees' 

decision-making process,  

… to be continued 
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… continuation 

 Bee Colony (ABC) 

Algorithm 

convergence 

characteristics compared 

to the standard ABC 

algorithms 

 

The decision-making. 

process of employed bees 

managing transitions to 

the dance area  

 implementations of the 

ABC algorithm 

dubbed the transition 

control mechanism. 

5 Aslan et al. (2019). 

Improved quick artificial 

bee colony (iqABC) 

algorithm for global 

optimization 

To enhance the improved 

quick ABC performance. 

Employing ABC 

algorithm by exploiting 

better mechanism based 

on food management  

ABC algorithm does not 

fully solve the complex 

behaviours of honey bees 

in foraging  

The proposed method 

outperforms the 

traditional 

implementation of the 

ABC algorithm and its 

other variants 

significantly. 

Proposing an enhanced 

fast ABC (iqABC) 

method to strike a balance 

between local and global 

search capabilities. 

6 Sun et al. (2020). A 

modified surrogate-

assisted multi-swarm 

artificial bee colony for 

complex numerical 

optimization problems 

 

To proposes a surrogate-

assisted multi-swarm 

artificial bee colony 

(SAMSABC) 

By utilising diversity to 

strengthen the local 

exploitation potential 

through an orthogonal 

approach, greater 

competitiveness can be 

achieved. 

ABC suffers from slow 

convergence rate which 

limits its real-world  

applications 

The proposed algorithm 

is capable of striking an 

excellent balance 

between exploration and 

exploitation. 

Developing a modified 

ABC for solving complex 

optimization problems in 

order to maintain 

population diversity 

7 S. F. Hussain et al. 

(2020). Co-clustering 

optimization using 

Artificial Bee Colony 

(ABC) algorithm 

To propose the use of 

higher order correlations 

to generate similarity  

between rows and 

columns that are 

dependent on one 

another. 

 

Measuring the embedded 

similarities to optimizing 

the co-clusters by 

exploring the vicinity of 

the solutions produced by 

the ABC algorithm  

 

ABC algorithm lacking 

optimization problems 

for data clustering. 

Examining the 

performance of the ABC 

algorithm for the 

clustering of high-

dimension datasets. 

The optimization of 

clustering has been 

solved with 

improvements in the 

objective function 

8 Xiao et al. (2021).  To investigate the  On the basis of the ABC has some 

limitations 

ABCNG is more  The ABCNG algorithm 

… to be continued 
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… continuation 

 Artificial bee colony 

algorithm based on 

adaptive neighbourhood 

search and Gaussian 

perturbation 

effectiveness of the novel 

ABC with adaptive 

neighbourhood search 

and Gaussian 

perturbation (ABCNG) 

Neighbourhood structure, 

a modified global best 

solution guided search 

strategy is constructed 

that incorpora tes a new 

Gaussian perturbation. 

Such as a limited capacity 

for exploitation and a 

slow convergence rate. 

Competitive than six 

other ABCs. 

Is proposed as a new 

ABC with adaptive 

neighbourhood search 

and Gaussian 

perturbation. 

9 H. Wang et al. (2021). 

Artificial bee colony 

algorithm based on 

knowledge fusion 

To propose a novel ABC 

based on knowledge 

fusion (KFABC) 

Using KFABC to sensing 

the search status and to 

propose adaptively select 

appropriate knowledge. 

 

Exploitation capabilities 

of the tradition ABC 

algorithm is weak.   

KFABC outperforms 

nine ABC and three 

differential evolution 

algorithms 

A novel ABC algorithm 

based on knowledge 

fusion (called KFABC)  

10 Xiang et al. (2021). 

Artificial bee colony 

algorithm with a pure 

crossover operation for 

binary optimization 

To propose a binary ABC 

called (BABC) as a 

means of resolving the 

problem of uncapacitated 

facility location (UFLP). 

Utilizing a pure crossover 

operation to exchange 

information and eliminate 

random perturbation. 

ABC algorithm 

approaches to continuous 

optimization omit binary 

continuous space from 

consideration. 

The proposed BABC 

outperforms other state-

of-the-art approaches in 

terms of solution 

accuracy, convergence 

speed, and robustness. 

This paper proposes the 

creation of BABC in 

order to successfully 

solve the binary structure 

of the UFLPs. 
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2.3 MINIMUM DOMINATING SET 

2.3.1 Definition of 𝑴𝑫𝑺 

The dominating set of the graph 𝐺 (𝑉,𝐸) is a subset of vertices 𝐷 that has the property 

that each vertex in 𝐺 either belongs to 𝐷 or is next to a vertex from 𝐷. The minimum 

dominating set is the one that has the smallest set size. One of the standard NP problems 

is one of the most influential groups on the graph. It is imperative to figure out the 

minimum dominant set of the graph to get the best graph. This approach is what all the 

algorithms used to solve this want to do. This definition has two main parts: 𝐷𝑆 and 

𝑀𝐷𝑆. The 𝐷𝑆 is a group of vertices that connect to all other vertices. Problem: The 

minimum dominating set problem is to figure out the 𝐷𝑆 with the least number of points 

(𝑀𝐷𝑆). Also, the 𝑀𝐷𝑆 is defined as the minimum number of nodes that cover all other 

nodes in a given graph (Abed & Rais 2019). 

In social networks,  𝑀𝐷𝑆 is investigated for influence maximization which aims 

to diffuse information through networks ( Alipour et al. 2020). People in the network 

may not talk directly to each other because of time or other constraints. In this case, we 

might need to reach all of the network's nodes in an emergency, but only a small number 

of people in the network can be directly connected. Emergency messages can be sent 

quickly if all network nodes can be reached by at least one person (or one of these 

people). Some nodes might have to be chosen in a social network to ensure that news 

does not spread by checking the spread of news in the network. In these situations, the 

goal is to pick the least number of these nodes. Thus, the main issue” is how to find the 

minimum members of the networks that influence others? 

2.3.2 𝑴𝑫𝑺 Approaches 

Dominating sets are an essential concept in graph theory and have applications in a 

variety of fields, particularly social networks ( Chalupa 2018). In a social network, one 

common problem is to find the smallest group of influential individuals or a set of initial 

seeds so that all participants can be reached with only one hop from the seeds. This 

problem is equivalent to determining the network's minimum dominating set (minDS). 
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Under the assumption 𝑃 = 𝑁𝑃, the minDS problem is a classic non-

deterministic polynomial-time hardness (𝑁𝑃) − 𝑎 hard problem that cannot be 

approximated with a constant ratio (Raz & Safra 1997). Furthermore, even when limited 

to power-law graphs, negative results for minDS approximation have been 

demonstrated (Gast et al. 2015). Several works on exact algorithms for minDS have 

been completed, with the primary goal of improving the upper bound of running time. 

Exact algorithms for minDS that are state-of-the-art are based on the branch and 

reduced paradigm and can achieve a run time of 𝒪(1:4969𝑛) (Van Rooij & Bodlaender 

2011). Better complexity results have been obtained using fixed parameterized 

algorithms (Karthik & Inbal 2021). Theoretical aspects are the primary focus of such 

algorithms. 

2.3.3 Heuristics for the 𝑴𝑫𝑺 

The dominating set is classified into three types in graph theory: the minimum 

dominating set (𝑀𝐷𝑆), the minimum connected dominating set (MCDS), and the 

minimum weight dominating set (𝑀𝑊𝐷𝑆). These variants have been successfully 

investigated in the recent past using meta-heuristic approaches (Lin et al. 2016). 

Although the 𝑀𝐷𝑆 problem's primary objective is to find the smallest dominating set, 

several studies have taken into account the processing time required to find the 𝑀𝐷𝑆. 

Lin et al. (2016) developed a hybrid method that combines a greedy construction 

procedure with some stochastic operators to quickly find the highest-quality solution to 

the 𝑀𝑊𝐷𝑆. On the other hand, Giap & Ha (2014) attempted to accelerate the solution 

of the 𝑀𝐷𝑆 problem by parallelizing the genetic algorithm. As a result, they 

investigated a parallel scheme for generating the desired solutions for the 𝑀𝐷𝑆 problem 

using genetic algorithm operators. 

Heuristic approaches are frequently used in practise to obtain good solutions in 

a reasonable amount of time. While greedy algorithms are fast, yet the resulting 

dominating sets are far from satisfactory relatively to the input size. Sanchis (2002) 

compares several greedy MinDS heuristics. Typically, heuristic search algorithms 

return very good, if not optimal, results in a reasonable amount of time. To solve 

MinDS, well-known heuristic search methods such as genetic algorithms Hedar & 
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Ismail (2010) and ant colony optimization (Potluri & Singh 2013) were developed. 

Hyper meta-heuristic algorithms optimise performance by combining various heuristic 

search algorithms and preprocessing techniques (Abu-Khzam et al. 2017). These 

algorithms were evaluated on standard benchmarks containing thousands of vertices.  

Cai et al. (2021) recently applied the configuration checking (CC) strategy to MinDS, 

resulting in the development of two local search algorithms. Y. Wang et al. (2017) 

proposed the CC2FS algorithm for unweighted and weighted MinDS and demonstrated 

that it outperformed ACO-PP-LS on standard benchmarks (Potluri & Singh 2013). 

Following that, FastMWDS was proposed as a CC-based local search that significantly 

improved CC2FS on massive weighted graphs (Y. Wang et al. 2018). Chalupa( 2018) 

proposed RLS and order-based randomised local search algorithms that outperformed 

ACO-LS and ACO-PP-LS (Potluri & Singh 2013) on unit disc graph benchmarks as 

well as some massive graphs. Fan et al. (2019) developed ScBppw, a local search 

algorithm based on two concepts: score checking and probabilistic random walk. 

Small instances of a given problem can be solved intuitively more accurately 

and quickly than large instances of the same problem. As a result, some studies have 

recommended that problem instances be divided into smaller ones to facilitate problem-

solving. For example, specific instances of the vehicle routing problem (VRP) had been 

partitioned into sectors and solved concurrently (Rabbouch et al. 2020). 

Table 2.2 summarises ten research papers on the 𝑀𝐷𝑆 problem from various 

angles. The papers are numbered 1 (2010), 1 (2013), 1 (2016), 2 (2018), 1 (2019), 2 

(2020), and 2 (2021). (2021). As a result, 80% of the papers are from the last four years, 

while the remaining 20% are from older papers. 𝑀𝐷𝑆 was mentioned in the titles of all 

papers for various reasons. However, there is agreement among authors that the 𝑀𝐷𝑆 

problem was approached differently, with each containing a different or specific 

algorithm. This implies that the 𝑀𝐷𝑆 problem, as an idea, can lead to a variety of 

applications and purposes. The table has six columns: author/year/title, objective, 

methodology, gaps, results, and contribution. The goal of this paper is to either 

compromise two algorithms of 𝒪(𝑎2 ) and 𝒪(log 𝑛) (Lenzen & Wattenhofer 2010).  This 

approach an easy method by a complex two-step ACO algorithm (Jovanovic & Tuba 

2013), to dedicate central and distributed approximation algorithms Mahmood et al. 
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(2016), to ease the probabilistic wireless sensor (Boria et al. 2018), to compare the 

performance The methodology used by all papers is nearly identical, which is to run the 

new algorithm through a process. The gap is the most important aspect of the table. The 

difficulty of using the non-deterministic polynomial to solve the 𝑀𝐷𝑆 problem was the 

source of the gap in 2010. (Lenzen & Wattenhofer 2010). However, in 2013, a trial to 

solve that problem was carried out by implementing the greedy algorithm (Jovanovic 

& Tuba 2013), which was then followed by the objective function exponential time 

𝒪(𝑘𝑛) algorithms (Mahmood et al. 2016). Other gaps that have emerged since 2016 

include the use of 𝑀𝐷𝑆 in natural wireless sensors (Boria et al. 2018), optimization 

problems (Li et al. 2018), finding the smallest number of nodes (Abed & Rais 2019), 

searching for new ideas (Cai et al. 2021), and dealing with graph theory (ALOFAIRI et 

al. 2021). The results appear to be successful in all cases, such as minimising the time 

required to run the test (Lenzen & Wattenhofer 2010) or using polynomial (Boria et al. 

2018), or dealing with large amounts of data (ALOFAIRI et al. 2021). As a result, these 

research papers have made the 𝑀𝐷𝑆 problem more efficient and produced better results.  

As conclusion for MDS, Table 2.2 summarizes ten research papers published 

between 2010 (Lenzen & Wattenhofer 2010) and 2021(ALOFAIRI et al. 2021).  The 

papers discuss the design and implanting dedicated central distribution for 

approximation, presenting swarm intelligence behaviour, and employ heuristic 

approach.  The methodology was about implementing various algorithms, integrating 

different strategies, constructing novel local search framer.  The results were denoted 

to show the performance of several algorithms and compare the results.  The paper have 

mainly contributed to highlight the missing trading-off in previous work, applying 

partitioning scheme, and to handle the dynamic of the network.  It is important to 

embark on the gaps mentioned in these articles.  The show solving the non-deterministic 

polynomial time, showing the importance of optimization problem with several 

applications. 
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Table 2.2 Literature review of 𝑀𝐷𝑆  problem 

# Author/Year 

Title 

Objective Methodology Gaps Results Contribution 

1 Lenzen & Wattenhofer 

(2010). Minimum 

dominating set 

approximation in graphs 

of bounded arboricity 

To compromise two 

algorithms 𝒪(𝑎2) and 

𝒪(log 𝑛) to generalize the 

problem on specific 

graphs. 

Our first algorithm 

employs a forest 

decomposition, achieving 

a factor 𝒪(𝑎2) 

approximation in 

randomized time 𝒪(log 

𝑛). 

 

Non-deterministic 

Polynomial time (NP)-

hard to solve the 

minimum dominating set 

problem. 

• Decomposing 𝑂(𝑎2) 

with approximation 

in randomized time 

𝒪(log 𝑛). 

• Approximation ratio 

of 𝒪(𝑎 log∆), where 

∆ is the maximum 

degree. 

 

Trade-off between 

running time and 

approximation ratio, that 

is, for any parameter 𝑎 ≥ 

2, we can obtain an 𝑂(𝑎 

log∆). 

2 Jovanovic & Tuba 

(2013). Ant colony 

optimization algorithm 

with pheromone 

correction strategy for the 

minimum connected 

dominating set problem 

 

To approach an easy 

solution without utilising 

the previously developed 

complex two-step ACO 

algorithm. 

Implemented a one-step 

ACO algorithm based on 

a known simple greedy 

algorithm that has a 

significant drawback of 

being easily trapped in 

local optima. 

The MCDSP is being 

used in mobile ad hoc 

networks (MANETs) and 

sensor grids. 

 Comparing the new 

approach to the existing 

algorithms using standard 

benchmark data. 

 

By incorporating a 

pheromone correction 

strategy and paying close 

attention to the ACO 

algorithm's initial 

condition, this negative 

effect can be avoided. 

3 Mahmood et al. (2016). 

Membrane computing to 

enhance time efficiency 

of minimum dominating 

set 

To design and implement 

dedicated centra l and 

distributed approximation 

algorithms for restricted 

graph classes.  

Using the algorithmic tile 

self-assembly model, to 

solve 𝑀𝐷𝑆  problem 

 in 𝒪(𝑛2) steps. 

In recent research 

exponential time 𝒪(𝑘𝑛) 

algorithms are used for 

some graph classes for 

solving the 𝑀𝐷𝑆  

problem. 

 
 

• The 𝑀𝐷𝑆  problem 

has been solved in 

𝑂(𝑛2) steps.  

• In the area of 

membrane 

computing, 𝑃 

systems introduce 

two levels of 

parallelism. 

Introduces an algorithm 

based on the parallelism 

feature of the 𝑃 systems 

model for solving the 

𝑀𝐷𝑆  problem in linear 

time 𝑂(𝑛). 

… to be continued 
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… continuation 

4 Boria et al. (2018). The 

probabilistic minimum 

dominating set problem 

Present a natural wireless 

sensor network problem 

with a probabilistic MDS 

model.  

Demonstrate that the 

objective function 

calculation for this 

general probability 

problem is #P-complete.  

The natural wireless 

sensor network problem. 

• The objective 

function (#P-

complete) was 

introduce a restricted 

version of 

probabilistic 𝑀𝐷𝑆 . 

• Objective function 

performed in 

polynomial. 

Studying the complexity 

of this restricted version 

in graphs mainly in trees 

and paths with some 

approximation results.  

5 Li et al. (2018). An 

Efficient Local Search 

Algorithm for the 

Minimum k-Dominating 

Set Problem 

On classical instances, 

compare the performance 

of VSCC2 to that of the 

classic GRASP algorithm 

and the well-known 

commercial solver 

CPLEX. 

Integration of the 

MKDSCC2 strategy and 

scoring mechanism. 

Propose a strategy for 

vertex selection. 

This is a significant NP-

hard combinatorial 

optimization problem 

with a wide variety of 

applications. 

A fast local search 

algorithm (VSCC2) is 

used to implement a two-

level configuration 

checking strategy, a 

scoring mechanism, and a 

vertex selection strategy. 

In terms of solution 

quality and computation 

time, the VSCC2 

algorithm is extremely 

competitive. 

6 Abed & Rais (2019). 

Solving the Minimum 

Dominating Set Problem 

of Partitioned Graphs 

Using a Hybrid Bat 

Algorithm 

Presenting the swarm 

intelligence behaviour to 

deal with population bat 

algorithm (BA) to find the 

smallest set of nodes that 

dominate the graph. 

Proposing method partitions  

to reduce the computational 

time of finding the 𝑀𝐷𝑆 

solution by analyzing 

performance of the hybrid 

algorithm.  

MDS finds the minimum 

number of nodes that have 

connections to all other 

nodes in a given graph. 

The Simulated annealing 

(SA) algorithm balances 

exploitation and 

exploration for a best 

possible solution.  

The gained results 

showed significant speed 

up when the partitioning 

scheme was applied. 

7 Cai et al. (2021). Two-

goal Local Search and 

Inference Rules for  

To employ heuristic 

approaches (FastDS) to 

obtain good solutions  

• Using a novel local 

search framework. 

• constructing  

Developing an efficient 

local search algorithm for 

𝑀𝐷𝑆  with two ideas. 

• FastDS obtains the 

best performance. 

• obtains better  

FastDS is evaluated on 4 

standard benchmarks and 

3 massive graphs  

… to be continued 
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… continuation 

 Minimum Dominating 

Set 

within reasonable time. procedure with inference 

rules. 

 solutions algorithms on 

massive graphs. 

benchmarks 

8 Alipour et al. (2020). On 

Distributed Algorithms 

for Minimum 

Dominating Set problem, 

from theory to application 

To propose a distributed 

algorithm for the 𝑀𝐷𝑆  

problem. 

Implementing an 

algorithm on massive 

social networks and 

compare the results with 

the state of the art 

algorithms using dynamic 

networks by 

adding/deleting edges 

and vertices. 

A new algorithm on 

massive social networks 

with the state of the art 

algorithms.methodology. 

• Solving the distance 

MDS 

• Studying 

experimentally the 

efficiency of the 

proposed algorithm.  

• Our proposed 

algorithm is fast and 

easy to implement, 

Reasonable solutions to 

use it in distributed model 

practically. 

9 Alipour & Salari (2021)). 

On distributed algorithms 

for minimum dominating 

set problem and beyond 

Studying 𝑀𝐷𝑆  problem 

and the minimum total 

MTDS problem. 

Presenting a distributed 

randomized algorithm to 

solve 𝑀𝐷𝑆  and MTDS 

problems using our 

theoretical results.  

The minimum 

dominating set (𝑀𝐷𝑆) & 

MTDS 

Computing 

approximately 𝑀𝐷𝑆  and 

MTDS to achieve an 

upper bound on the size 

of 𝑀𝐷𝑆  of a graph. 

The new algorithms 

handle the dynamic of the 

network under constraints 

in choosing the elements 

of MDS. 

10 ALOFAIRI et al. (2021). 

Quality Evaluation 

Measures of Genetic 
Algorithm and Integer 

Linear Programming for 

Minimum Dominating Set 

Problem 

To compare the performance 

of two approaches to solving 

the MDS problem (ILP and 

HGA). 

• Utilizing the available 

benchmark test. 

• Proposing three 

measures to evaluate 

the quality of the 

obtained solution. 

Due to the inadequacy of 

previous methods, numerous 

methods have been 
developed to solve the MDS 

problem and generate 

distinct solutions for the 

same graph. 

The experimental results 

indicate that the ILP-MDS 

outperforms the HGA-MDS 
in terms of calculating the 

domination number, 

determining the optimal 

solution, and manipulating 

large data graphs.  

The average of the node's 

degree and between 

centrality is calculated using 
the close performance of two 

methods. 
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2.4 SUMMARY 

 In terms of definition and related topics, this chapter has outlined the foundations and 

principles of MDS. This chapter thoroughly discussed the definition, approach, and 

heuristics of MDS. The use of approximate algorithms is frequently used to solve the 

MDS. Hence, this chapter has reviewed works that used this class of algorithms to solve 

the MDS. Also, this chapter has focused on studies that concerns the ABC algorithm 

due to its importance in various optimization fields. Additionally, this chapter has 

presented summarization through tabular forms to ease the reading of the reviewed 

works 
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CHAPTER III  

 

 

METHODOLOGY 

3.1 INTRODUCTION 

This chapter describes the research method used to achieve the objectives of this study. 

This chapter discusses the stages of this research and the proposed approach for 

resolving the 𝑀𝐷𝑆. The technique used in this study and the phases of the proposed 

work have been described. The proposed method then shows algorithmic steps for 

reducing the 𝐷𝑆 of a given graph. 

This chapter is divided into seven sections. Section 3.2 describes the 

methodology used to conduct the research for this study. Sections 3.3–3.6 go over the 

steps of the research methodology. Finally, Section 3.7 summarises the contents of this 

chapter. 

3.2 RESEARCH METHODOLOGY 

This section goes over the research methods that were used in this study. In computer 

science, research approaches are typically classified into four categories Johnson 

(2006). Demonstration proof, empiricism, mathematical proof, and hermeneutics are a 

few examples. Furthermore, numerous studies make use of a variety of research 

methodologies. Empiricism proofs are used because mathematical proofs are difficult 

or impossible to implement in practice (Bartz-Beielstein et al. 2010). As a result, this 

paper takes an experimental approach to create a solver for minimising the dominant 

set for a specific graph. 

In practice, the research approach for this study is divided into five phases, as 

shown in Figure 3.1. This graphic summarises the research design used in this study. 
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The details of the study phases will be discussed in greater depth in the sections that 

follow. 

 

 

 

 

 

 

  

 

 

 

 

 

 

3.3 PROBLEM IDENTIFICATION 

The first step in this investigation was to identify the problem by evaluating existing 

𝑀𝐷𝑆 approaches. To that end, we posed the following research questions in this study: 

How can the artificial bee colony's exploration and exploitation operations be balanced 

Figure 3.1 The proposed research methodology 
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in order to find the smallest 𝐷𝑆 for large graph instances? Furthermore How effective 

is artificial bee colony hybridization when the 𝑀𝐷𝑆 problem is taken into account? 

This research aims to optimise the artificial bee colony's exploitation method to 

achieve a balance between exploration and exploitation. The second goal is to evaluate 

the proposed method (Hybrid artificial bee colony algorithm) and compare it to previous 

work. 

3.4 PROBLEM REPRESENTATION 

The second section of this study is devoted to formulating the 𝐷𝑆 problem. This 

problem entails encoding the solution to the problem, which will be used as input for 

the search algorithm. This phase also establishes the constraints that the output of the 

search process must meet. Finally, the second phase establishes the fitness function used 

to evaluate the solutions discovered during the search operation. As a result, the output 

of this step is an optimization model that must be solved by reducing the 𝐷𝑆 to the 

smallest possible set while remaining constrained by the given constraints. 

 

 

 

 

 

 

Based on the definition of the 𝐷𝑆, a given graph 𝐺 is divided into two subsets: 

𝐷𝑆 and 𝑁𝐷𝑆. As a result, a binary representation is a standard encoding strategy for 

this problem, with ones denoting the 𝐷𝑆 and zeros denoting the 𝑁𝐷𝑆. Consider using a 

simple graph, such as the one shown in Figure 3.2, to demonstrate this representation. 

Figure 3.2 An example of the 𝑀𝐷𝑆 
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Each node is represented by a single bit in binary encoding, arranged 

alphabetically. Thus, for the above graph, a random 𝑀𝐷𝑆 could be 10100010, implying 

that the 𝑀𝐷𝑆 is {𝐴, 𝐶, 𝐺}. The ideal 𝑀𝐷𝑆 for this case, however, has only two nodes, 

B and C, which the binary string 𝑥 = 01100000 can represent. The 𝑀𝐷𝑆 has a capacity 

of two nodes, with the remaining nodes connected to the 𝑀𝐷𝑆. Figure 3.2 and 3.3's 

binary representations are found in Table 3.1. 

 

Table 3.1 Binary representation for Figure 3.2 

Random 𝑀𝐷𝑆  of Figure 3.2 

A B C D E F G H 

1 0 1 0 0 0 1 0 

 

Optimal 𝑴𝑫𝑺 of the graph in Figure 3.2 

A B C D E F G H 

0 1 1 0 0 0 0 0 

Thus, in order to evaluate an 𝑀𝐷𝑆 solution, we must count the ones (see 

Equation 3.1) and guarantee that nodes are connected to the 𝑀𝐷𝑆, as illustrated in 

Equation (3.2): 

 𝑓(𝑥) =  ∑ 𝑥𝑖
𝑛
𝑖=1  …(3.1) 

 𝑠. 𝑡. ∑ 𝐴𝑖𝑗𝑥𝑗 ≥ 1
𝑛

𝑗=1

 
…(3.2) 

where n is the graph order, and A is the adjacency matrix, which is as follows: 

𝐴 = {
1 𝑖𝑓 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡

0                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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3.5 THE PROPOSED METHOD 

The proposed method starts by reading the 𝑀𝐷𝑆 model from the previous phase. After 

that, the proposed ABC algorithm treats encoded solutions as a food source for artificial 

bees to investigate. The positions of the food sources are then updated for a 

predetermined number of cycles. Each cycle, the local search is launched with a 

predetermined probability known as the local search rate (𝑙𝑟). These steps are depicted 

in Figure 3.3. The ABC method typically works with continuous variables, requiring 

the use of an intermediary function to convert the ABC food source to an 𝑀𝐷𝑆 solution. 

This study uses the angular modular function to deal with continuous variables. This 

section goes over each of these steps. 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 The workflow of the proposed method 
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3.5.1 ABC Algorithm 

The search for the best source is delegated to three groups of bees that comprise the 

ABC algorithm. The first group is made up of bystanders, who gather in the dance area 

to choose a food source. The second group consists of employed bees; a bee returns to 

a previously visited food source. The third group is the scouts, and each member 

conducts a random search. Because each employed bee is assigned to a single food 

source, the total number of food sources near the hive equals the total number of 

employed bees. When a food source is depleted, the hired bee is transformed into a 

scout. The procedures used by these groups to find the best food source are depicted in 

Algorithm 1. 

The initialization step of the ABC algorithm involves the bees randomly 

selecting a set of food sources and quantifying their nectar production (see Lines 1-3 in 

Algorithm 1). When these bees return to their hive, they will share nectar source 

information with the bees in the dance area. Following the dissemination of knowledge, 

hired bees to return to previously visited food sources that are still fresh in their 

memory. The hired bees will then choose new food sources based on visual cues in 

close proximity to the current one. When employed bees return to the hive's dance area, 

they share nectar information with viewers, allowing them to select their preferred food 

source. An observer would choose a food source based on the amount of nectar shared 

by the employed bees, with a high probability of choosing a nectar-rich food source. 

Equation 3.3 calculates the nectar amount by dividing the probability of selecting a food 

source by the total amount of nectar produced by other bees. When a food source runs 

out, the bees abandon it and select a new one randomly (as shown in Line 17 of 

Algorithm 1). 
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The ABC algorithm considers a solution to the 𝑀𝐷𝑆 problem to be the location 

of a food source. The quality of the solution is proportional to the nectar content of the 

food source. The population's total number of solutions equals the number of onlookers 

or employed bees. The ABC method starts by randomly selecting solutions from a 

uniform distribution. Each solution/food source 𝑥𝑖(𝑖 = 1, 2,3, . . 𝑃𝑆) is an 𝑁-

dimensional vector, with 𝑃𝑆 denoting population size and 𝑁 denoting graph order. 

Following initialization, the employed, observer, and scout bees seek the population of 

solutions regularly. The search process ends when the specified maximum number of 

MC cycles is reached. Each cycle, an artificially employed bee probabilistically alters 

the solution or food source it memorises to find a new food source. This novel food 

source's nectar content and fitness value are being assessed. If the nectar content of the 
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new food source is superior to that of the old, the bee will prefer the new over the old. 

Because the amount of nectar in the 𝑀𝐷𝑆 is proportional to its size, an artificial bee 

will replace an older 𝑀𝐷𝑆 with a smaller one. If the new 𝑀𝐷𝑆 is larger than the old, 

the bee will keep the old. When the artificially employed bees have finished their cycle, 

they distribute the new 𝑀𝐷𝑆s to the artificial observers, who choose one based on its 

size. A bystander will change the new 𝑀𝐷𝑆 in the same way that employed bees do.  

An onlooker will choose a food source probabilistically, where a food source i 

is associated with a selection probability pi which is calculated as follows: 

𝑝𝑖 =  
𝑓𝑖

∑ 𝑓𝑖
𝑃𝑆
𝑗 =1

 …(3.3) 

where 𝑓𝑖 is the fitness value of solution or food source 𝑖 evaluated, and PS is the 

population size which is equal to the number of food sources and the number of 

employed bees (BN). In the 𝑀𝐷𝑆, 𝑓𝑖  is the 𝐷𝑆 size of the solution 𝑖.  The artificial bees 

in the ABC algorithm produces a new food source (solution) from previous ones as 

follows: 

 𝑣𝑖𝑗 = 𝑋𝑖𝑗 +  ϕ𝑖𝑗  (𝑋𝑖𝑗 + 𝑋𝑘𝑗) …(3.4) 

where 𝑘 ∈  {1, 2, 3, … , 𝑃𝑆} and 𝑗 ∈  {1,2, 3, … , 𝑁} are randomly chosen 

indices, and 𝑘 ≠  𝑖. 𝜙 is a random number between [-1, 1] that controls the production 

a new source food around 𝑋_𝑖𝑗.  

The new source food produced by Equation 3.4 is evaluated by the artificial bee 

and compared to Xi to replace it if the new on carries smaller 𝑀𝐷𝑆. This process 

repeated till a predefined maximum number of cycles (MC) is reached. 

3.5.2 Conversion to Binary 

It is critical to remember that the ABC algorithm works with continuous variables. On 

the other hand, the proposed method uses a function known as angular modulation to 
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convert these variables to binary solutions. The initial population of the ABC (Food 

sources) is uniformly distributed across the time range [0, 1]. This is maintained by 

inspecting the variable boundaries throughout the search process. Thus, the round 

function can be used to convert variables with values less than 0.5 to 0 and variables 

with values greater than 0.5 to 1. A sigmoid function can also be used to complete this 

work. On the other hand, these functions reduce variables with smaller values to zero, 

even if they have the potential to be in the dominating set. As shown in Equation (3.5), 

we used the angular modulation function to obtain the binary solution: 

 𝑔(𝑥) = sin(2𝜋(𝑥 − 𝑎) × 𝑏 × cos(2𝜋(𝑥 − 𝑎) × 𝑐)) + 𝑑 …(3.5) 

where 𝑎, 𝑏, 𝑐, and 𝑑 are coefficients that determine the shape of the function. 

That is, 𝑎 controls the shift over the horizontal axis of the function, 𝑏 indicates the 

maximum frequency of the sin function, 𝑐 and 𝑑 are the frequency of the cos function 

and the vertical shift, respectively. In this study, we used the default values of this 

function, which are 𝑎 = 0, 𝑏 = 1, 𝑐 = 1, and 𝑑 = 0. The input of this function 𝑥 is a 

decision variable from a food source of which is uniformly distributed. The number 

these variables are determined by the graph order to find the 𝑀𝐷𝑆 in the original 

problem space. 

3.5.3 Hybridized ABC with Local Search Algorithm 

At each stage of the ABC algorithm, an artificial bee selects a food source to change, 

allowing the system to explore a large area of the search space. On the other hand, ABC 

falls short of the goal of hastening the search for a promising solution. As a result, we 

incorporate a local search algorithm to improve the ABC's exploitation process. This 

study employs a technique known as late acceptance hill-climbing (LAHC) in its local 

search algorithm. This algorithm starts with a predefined solution or food generated by 

the ABC.  
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The primary steps of the LAHC are to obtain the initial solution and iteratively 

modify it to a new state. The latter will be used as a starting point based on predefined 

criteria. As shown in Line 9 of Algorithm 2, these criteria determine whether a new 

solution can be used as a new starting point. The first requirement is that the new 

solution outperforms the existing one. The second criterion determines whether the new 

solution is better than the solution from the previous cycle. This procedure is repeated 

until a predetermined maximum number of repetitions is reached. 

The ABC algorithm will use the LAHC output as a new food source. This food 

source is distributed for harvesting to other artificial bees. The ABC algorithm's 

exploitation process is consolidated in this procedure. However, as shown in Algorithm 

3, the LAHC is only called when a predefined probability, denoted lr, is met. This 

strategy strikes a balance between experimenting with and exploiting the ABC 

algorithm. 
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Algorithm 3 depicts the hybrid binary ABC steps (HBABC). This algorithm 

differs significantly from the original ABC in three ways. The first difference is in 

solution encoding; the HBABC uses the binary conversion function shown in Equation 

3.5. (see line 9 of Algorithm 3). The second distinction can be found in Algorithm 3, 

line 11, where the HBABC modifies the probability function of the standard ABC (as 

shown in Equation 3.6) 

  𝑝𝑖 = 0.9 ×
𝑓𝑖

∑ 𝑓𝑗
𝑃𝑆
𝑗=1

+ 0.1 …(3.6) 

As demonstrated in previous experiments, this equation positively affects the 

ABC's exploratory process (S.-C. Huang 2015). This function is unique to the spectator 

phase, as it necessitates the selection of a food source. This ability allows observer bees 

to investigate food sources with a low chance of success. Food sources with a high 

nectar content, on the other hand, will continue to be associated with a high probability 

of selection. 

HBABC's search strategy is now focused on exploring and exploiting the issue 

space, which is the third improvement. Lines 20-24 of Algorithm 3 show the steps 

involved in activating the local search algorithm, which is controlled by the 𝑙𝑟 

parameter. These procedures entail picking a random food source and using the LAHC 

to expand the search radius. If the obtained food source has a higher nectar content, the 

associated 𝑀𝐷𝑆 is lower than the previous one. 
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3.6 MODEL EVALUATION 

The fourth component of this study's proposed technique, as shown in Figure 3.1, is to 

evaluate the proposed algorithm. This step is used to assess the performance of the 

proposed method to include evaluating the basic ABC concerning the 𝑀𝐷𝑆 problem. 

After that, the binary version of the ABC is examined by performing numerous ABCs. 

Pus
at 

Sum
be

r 

FTSM



39 

 

This includes a comparison of three binary functions: angle modulation, round function, 

and sigmoid function. The performance of the hybrid ABC is then compared to that of 

the basic ABC. This test aims to show how the suggested local search affects the ABC 

algorithm. 

3.7 SUMMARY 

This chapter discussed the approach used in this study to find a solution to the 𝑀𝐷𝑆 

problem. Each section of this chapter describes the stages of our process. This includes 

the representation of the addressed problem, which establishes the objective function 

for evaluating the quality of the generated 𝑀𝐷𝑆 solution. The constraints of the problem 

and the encoding of the 𝑀𝐷𝑆 solution are also described. Following that, the proposed 

strategy for resolving the 𝑀𝐷𝑆 problem is thoroughly detailed. This includes illustrating 

the flow of the algorithms used and providing pseudocode for each algorithm. That is, 

when necessary, the algorithmic procedures are explained mathematically. Finally, the 

proposed method's evaluation is discussed. As a result, it is easier to follow along with 

the results, which will be provided in the following chapter. 
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CHAPTER IV  

 

 

RESULTS ANALYSIS AND DISCUSSION 

4.1 INTRODUCTION 

This chapter presents the findings of the experiments carried out in this study which 

includes a description of the evaluation criteria and the datasets. Because the proposed 

method in this study is based on a hybrid algorithm, we present the results of each 

method to demonstrate the impact of hybridization. The chapter provides the ABC 

algorithm's results, and its hybrid variant. This chapter is organized into five sections 

including the current one. Section 4.2 shows the experimental design used in this study, 

which illustrates the experiments conducted in this study. Section 4.3 describes the 

dataset used in this study and the evaluation metrics. Section 4.4 is dedicated to 

analysing the components of the proposed algorithm. Then, Section 4.5 presents a 

comparison to related works. Finally, Section 5 gives a summary of the chapter. 

4.2 EXPERIMENTAL DESIGN 

This section explains the experiments carried out in this study. These include a series 

of experiments designed to demonstrate the effectiveness of each component of the 

proposed method. Figure 4.1 depicts the three main experiments carried out in this 

study. The first and second experiments use the ABC and LAHC algorithms to solve 

the 𝑀𝐷𝑆. The first experiment demonstrates which binary conversion function is best 

for the ABC. The second is devoted to demonstrating the effect of the local search 

algorithm on the ABC. The third experiment compares the hybrid binary ABC to the 

related works. . The hybrid ABC is compared to the basic ABC to show the impact of 

the local search algorithm on the ABC. 
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Figure 4.1 Experimental design of the proposed method 
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4.3 EVALUATION: DATASETS AND METRICS 

4.3.1 Datasets 

This section describes the dataset used in this study to evaluate the method. In this study, 

the proposed method for the 𝑀𝐷𝑆 problem is evaluated using a dataset of unit disc 

graphs (UDG), as demonstrated in previous studies (Pinacho-DaviDSon & Blum 2020). 

UDG is defined as equal-sized intersection graphs in the plane to provide a graph-

theoretic model for broadcast networks (cellular networks) and computational geometry 

problems. There are four regions or spaces in the space. The points are evenly 

distributed on a plane with a predefined area. UDGs are used to simulate WSN networks 

in which each node is a wireless sensor network. If the transmission ranges of two nodes 

overlap, they are connected. As a result, this data has three predefined parameters: the 

number of nodes, the plane's area, and the transmission range. UDGs are made up of 

fourteen networks based on these parameters, as shown in Table 4.1 These networks 

had previously been used in 𝑀𝐷𝑆 research (Abed & Rais 2017, 2019; Chalupa 2018; 

Hedar & Ismail 2012; Potluri & Singh 2011). As previously stated, UDGs is used to 

simulate WSN networks, so the range is an indicator of graph density. In other words, 

an instance with a large range would have more edges. Table 4.1 divides the networks 

into two categories based on the sequence of the ranges within each network. The six 

networks (Net-01, Net-03, Net-07, Net-12, Net-13, and Net-14) have the same range 

sequence.  This range is either 150, 200, or 250 at each step of 50 and will be referred 

to as identical networks. The remaining networks in the same table are not identical in 

the range within nor in the step, and they will be referred to as non-identical networks. 
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Table 4.1 Unit disk graph (UDG) dataset 

Network # Nodes Node’s range Area 

Net-01 50 150, 200, 250 1000X1000 

Net-02 80 60, 90, 120 400X400 

Net-03 100 150, 200, 250 1000X1000 

Net-04 100 80, 90, 100, 110, 120 600X600 

Net-05 200 70, 80, 90, 100, 110, 120 700X700 

Net-06 200 100, 110, 120, 130, 140, 150, 160 1000X1000 

Net-07 250 150, 200, 250 1000X1000 

Net-08 250 130, 140, 150, 160 1500X1500 

Net-09 300 180, 190, 200, 210, 220 2000X2000 

Net-10 350 200, 210, 220, 230 2500X2500 

Net-11 400 220, 230, 240 3000X3000 

Net-12 500 150, 200, 250 2000X2000 

Net-13 750 150, 200, 250 2000X2000 

Net-14 1000 150, 200, 250 2000X2000 

 

4.3.2 Evaluation metrics 

This study's proposed algorithm is based on stochastic operators, so statistical metrics 

are used for evaluation (Bäck et al. 1995). These metrics necessitate multiple algorithms 

runs, i.e., 30 runs for each graph instance. Then, we calculate the mean and standard 

deviations for each instance and identify the minimum value, as shown below. 

• The minimum run value: Out of any given number of runs, only the smallest  

value is considered which represents the best solution obtained by the algorithm.  

• Mean: For the thirty runs, the average value is depicted in Equation 4.1.  The 

mean is defined as the sum of all values in terms of the fitness function (𝑓(𝑥𝑖)) 

divided by the total number of runs (𝑁). The mean value shows average solution 

that can be obtained from the algorithm. 

 𝑀𝑒𝑎𝑛 = 1
𝑁⁄  × ∑ 𝑓(𝑥𝑖)

𝑁
𝑖=1  …(4.1) 
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• Standard Deviation (SD): SD measures the variation of the algorithm in terms 

of given values (𝑥𝑖) and the mean (𝑥 ′) as shown in Equation 4.2.  Very small 

SD indicates more stability of a function than high SD values (Karras et al. 

2017). The formula of the SD is shown in Equation 4.2. 

 𝑆𝐷 = √
1

𝑁−1
× ∑ (𝑥𝑖 − 𝑥 ′)2𝑁

𝑖=1  
…(4.2) 

4.4 RESULTS ANALYSIS 

4.4.1 Results of the binary Conversion Functions 

This section displays the ABC algorithm's performance about the binary function, 

which represents the best solution for the 𝑀𝐷𝑆 problem. The standard ABC algorithm 

was designed to solve continuous problems; however, the binary functions adapt the 

ABC solution to the 𝑀𝐷𝑆 problem. Figure 4.2, Figure 4.3, Figure 4.4 depicts the 

performance of the proposed ABC for three typical networks that use a binary 

conversion function with round, Sigmoid, and angle modulation functions. The 

networks were chosen at random from Table 4.1 . These nets are Net 1 (range 150, 200, 

250), Net 8 (range 130, 140, 150, and 160), and Net 11 (range 220, 230, and 240). The 

goal of examining these functions is to demonstrate how to convert the ABC algorithm's 

source foods into binary vectors. Despite the different ranges used in the proposed nets, 

all nets agreed that the angle modulation function is superior to the round and Sigmoid 

functions in displaying the fewest nodes, which reflects the best dominating set. The 

presented result agrees with Yarkin & Coon (2021). The DS size has been measured 

and tabulated as a result of this experiment. The binary conversion affects the 

algorithm's performance because it distinguishes the dominant nodes from the others. 

This result contributes to the formula of this function.  This function denotes variables 

even if their values are less than 0.5 because the round function ignored these variables  

Pus
at 

Sum
be

r 

FTSM



45 

 

 

Figure 4.2 The round, sigmoid, and angle modulation functions performance of for 

(a) Net 1 

 

 

 

Figure 4.3 The round, sigmoid, and angle modulation functions performance of for 

(b) Net 8 
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Figure 4.4 The round, sigmoid, and angle modulation functions performance of for 

(c) Net 11 

  

4.4.2 Results of the hybrid binary ABC 

The impact of the local search algorithm on the ABC is depicted in this section. As 

shown in Figure 4.5, Figure 4.6, Figure 4.7, the proposed hybrid ABC (HABC) was 

used to minimize the 𝑀𝐷𝑆 size by demonstrating the algorithm convergence (fitness) 

over 100 iterations (Liu et al. 2013). The experiment is carried out on Net 1 because it 

has the lowest order among the other instances, with only 50 nodes. Net 1 has three 

instances of varying ranges, so the experiment was carried out for all of them. This 

demonstrates how the algorithm behaves when more solutions are available (denser 

graph). HABC provides better solutions throughout the search process for the lowest 

range of 150 (Figure 4.5). ABC performs better in the early stages of the search process 

for the higher density (range) of 250. However, even at a late stage in the search process, 

HABC exploited suitable solutions provided by the LAHC, as shown in Figure 4.7. As 

a result, the HABC was able to find the exact optimal solution as the ABC during 

previous iterations. The LAHC used this solution to find better solutions in subsequent 

iterations. 
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Figure 4.5 Analysis of Hybrid ABC algorithm at range of (a) 150 

 

 

Figure 4.6 Analysis of Hybrid ABC algorithm at range of (b) 200 
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Figure 4.7 Analysis of Hybrid ABC algorithm at range of (c) 250 

 

4.4.3 Comparison to the Related Works based on identical Range Networks 

This section compares the currently proposed method to related works using two meta-

heuristic algorithms, namely the hybrid bat (BA) algorithm (HBA) (Abed & Rais 2019), 

the hybrid genetic algorithm (HGA), and the simulated annealing 𝑀𝐷𝑆 (SAMDS) 

(Hedar & Ismail 2012). The comparison is based on the data in Table 4.2. The 

comparison is carried out by selecting nets with ranges that are similar to each other at 

150, 200, and 250. Net 1, Net 3, Net 7, Net 12, Net 13, and Net 14 are the names of 

these nets. HBAB represents the current work, while the algorithms HGA (Hedar & 

Ismail 2012), ACOLS (Potluri & Singh 2011), and ACO-LS-S (Chalupa 2018) were 

used for comparison. 

Table 4.2 displays the HBABC results for thirty runs, which are reported in 

terms of the minimum value (min), the mean of the runs (Mean), and the standard 

deviation (SD). However, in previous works, the SAMDS and HGA were only run for 
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twenty runs. Despite this, our proposed method produced an average 𝑀𝐷𝑆 size close to 

the minimum. That is, our proposed algorithm outperforms others in terms of stability. 

This is due to the ABC algorithm's exploration capability and the LAHC's exploitation 

procedure. The latter intensifies the search for a suitable solution, allowing the 

algorithm to produce roughly the same solution on each run. 

Table 4.2 Comparison of identical networks with same range of 150, 200, and 250  

Graph Instances HBABC HGA ACOLS-LS ACO-LS-S 

Network Range Min Mean SD Mean Mean Mean 

Net-01 150 12 12.1 0.30 12.9 12.9 14.6 

200 9 9.1 0.37 9.4 9.4 10.1 

250 6 6.2 0.4 6.9 6.9 7.1 

Net-03 150 18 18.1 0.3 17 17 17.4 

200 10 10.1 0.3 10.4 10.4 10.7 

250 8 8.1 0.37 7.5 7.6 7.5 

Net-07 150 19 19.1 0.37 18.7 18.1 18 

200 11 11.3 0.47 11.4 11 11 

250 8 8.2 0.42 8 8 8 

Net-12 150 62 62.4 0.49 67.3 64.5 63.8 

200 38 38.3 0.45 41.4 39.8 38.6 

250 25 25.4 0.49 27.9 26.8 25.8 

Net-13 150 65 65.3 0.45 72.9 68.7 65.2 

200 39 39.4 0.49 43.9 41.3 38.9 

250 26 26.4 0.48 28.7 27.3 26.3 

Net-14 150 66 67.4 0.76 74.8 70.3 66.7 

200 40 41.3 0.74 44.8 42.5 40.4 

250 27 28.5 0.76 29.8 28.2 27 

The normalized 𝑀𝐷𝑆 for three selected Nets were plotted using the three 

algorithms, namely the current work (HBABC) and comparative works described by 

HGA, ACOLS-LS, and ACO-LS-S as shown in Figure 4.8, Figure 4.9 Figure 4.10. 

These Figures shows the performance of the HBABC in comparison to other algorithms 

when nodes’ ranges are identical for all networks. For Net-14, which is the highest 

graph order, the HBABC has outperformed all methods when node’s range is low. 

While it was inferior to ACO-LS-S when nodes’ ranges were high. This is mainly 
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contributed to density of the graph, where the ACO-LS-S is highly dependent on the 

node’s degree as a heuristic function. Also, the same behaviour can be observed for 

Net-3, and Net-7. However, the HBABC was able to outperform all other methods for 

other networks. The overall observation shows that HBABC is better in seven of the 18 

cases, while it is worse in five of the 18 cases. ACO-LS-S appears to behave similarly 

to the proposed algorithm HBABC. 

 

Figure 4.8 Network of Net-01, Net-03, Net-07, Net-12, Net-13, and Net-14 

comparison using HBABC, HGA, ACOLS-LS, and ACOLS-LS-S at different range 

(a) 150 

 Pus
at 

Sum
be

r 

FTSM



51 

 

 

Figure 4.9 Network of Net-01, Net-03, Net-07, Net-12, Net-13, and Net-14 

comparison using HBABC, HGA, ACOLS-LS, and ACOLS-LS-S at different range 

(b) 200 

 

 

Figure 4.10 Network of Net-01, Net-03, Net-07, Net-12, Net-13, and Net-14 

comparison using HBABC, HGA, ACOLS-LS, and ACOLS-LS-S at different range 

(c) 250 

Another approach is to demonstrate the effect of detecting the actual mean of 

𝑀𝐷𝑆 recorded by HABC, HGA, ACOLS-LS, and ACOLS-LS-S with a range variation 
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